Computer Graphics

Computer Graphics is about digital models for threedimensional geometric objects as well as images. These shapes and images may represent approximations of the real world or could be synthetic, i.e., exist only in the computer. Goals of computer graphics research are the generation of plausible and informative images, and computation with reasonable resources, i.e. in a short amount of time with little storage requirements. The models and algorithms for this task combine knowledge from different areas of mathematics and computer science.

SIGGRAPH 2012: How Do Humans Sketch Objects?

We explore how humans sketch and recognize objects from 250 categories
© Mathias Eitz

Humans have used sketching to depict our visual world since prehistoric times. Even today, sketching is possibly the only rendering technique readily available to all humans. This paper is the first large scale exploration of human sketches. We analyze the distribution of non-expert sketches of everyday objects such as ‘teapot’ or ‘car’. We ask humans to sketch objects of a given category and gather 20,000 unique sketches evenly distributed over 250 object categories. With this dataset we perform a perceptual study and find that humans can correctly identify the object category of a sketch 73% of the time. We compare human performance against computational recognition methods. We develop a bag-of-features sketch representation and use multi-class support vector machines, trained on our sketch dataset, to classify sketches. The resulting recognition method is able to identify unknown sketches with 56% accuracy (chance is 0.4%). Based on the computational model, we demonstrate an interactive sketch recognition system. We release the complete crowd-sourced dataset of sketches to the community.

Please see our project page for more details.

Eurographics 2012: Shape Fabrication by Sliding Planar Slices

cardboard model
cardboard model
© Kristian Hildebrand

We introduce an algorithm and representation for fabricating 3D shape abstractions using mutually intersecting planar cut-outs. The planes have prefabricated slits at their intersections and are assembled by sliding them together. Based on an analysis of construction rules, we propose an extended binary space partitioning tree as an efficient representation of such cardboard models which allows us to quickly evaluate the feasibility of newly added planar elements. The complexity of insertion order quickly increases with the number of planar elements and manual analysis becomes intractable. We provide tools for generating cardboard sculptures with guaranteed constructibility.

Watch video

Download paper